Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.494
Filtrar
1.
Analyst ; 149(9): 2680-2696, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38497436

RESUMO

Single-walled carbon nanotubes (SWCNTs) show great potential for their application as cancer therapeutic nanodrugs, but the efficiency and mechanism of their accumulation in the cell, the modulation of cell activity, and the strong dependence of the results on the type of capping molecule still hinder the transfer of SWCNTs to the clinic. In the present study, we determined the mechanism and sequence of accumulation, distribution and type discrimination of SWCNTs in glioma cells by applying K-means clustering and principal component analysis (PCA) of Raman spectra of cells exposed to SWCNTs capped with either DNA or oligonucleotides (ON). Based on the specific biochemical information uncovered by PCA and further applied to K-means, we show that the accumulation of SWCNT-DNA occurs in two phases. The first phase involves the transport of SWCNT-DNA through vesicles and its redistribution in the cytoplasm, which is reflected in two SWCNT-related clusters. The second phase begins after 18 hours of interaction between cells and SWCNT-DNA. PCA shows the appearance of two SWCNT-associated PC loadings, reflected by the addition of a new cluster of SWCNTs with a narrowed and shifted G-peak in the spectra. It is caused by the loss of DNA capping and clumping of SWCNTs and triggered by the acidic conditions in autolysosomes resulting from the fusion of transport vesicles with lysosomes. SWCNTs penetrate all cellular compartments after 42-66 hours and lead to cell death. The clumped SWCNTs are released to the outside. In contrast, SWCNT-ON is hardly accumulated in glioma cells and after 72 hours of exposure to SWCNT-ON, the accumulation of SWCNTs corresponds to the first stage without reaching the second. PCA made it possible to separate the characteristics of cellular components against the high-intensity Raman signal from nanotubes and, thus, to propose the mechanism of accumulation and metabolism of nanomaterials in living cells without the use of additional research approaches. Our results elucidate the time dependence of the accumulation of SWCNTs on the capping molecule. We expect that our results can make an important contribution to the use of these nanomaterials in the clinic.


Assuntos
Nanotubos de Carbono , Análise de Componente Principal , Análise Espectral Raman , Nanotubos de Carbono/química , Análise Espectral Raman/métodos , Humanos , Linhagem Celular Tumoral , DNA/metabolismo , DNA/química , Análise por Conglomerados , Glioma/metabolismo , Glioma/patologia , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo
2.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421610

RESUMO

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


Assuntos
RNA Ligase (ATP) , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Planococáceas/enzimologia , Planococáceas/genética , Engenharia de Proteínas , Mutação , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos/genética
3.
Talanta ; 272: 125824, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422906

RESUMO

In this study, a self-powered biosensor based on an enzymatic biofuel cell was proposed for the first time for the ultrasensitive detection of soluble CD44 protein. The as-prepared biosensor was composed of the co-exist aptamer and glucose oxidase bioanode and bilirubin oxidase modified biocathode. Initially, the electron transfer from bioanode to biocathode was hindered due to the presence of the aptamer with high insulation, generating a low open-circuit voltage (EOCV). Once the target CD44 protein was present, it was recognized and captured by the aptamer at the bioanode, thus the interaction between the target CD44 protein and the immobilized aptamer caused the structural change at the surface of the electrode, which facilitated the transfer of electrons. The EOCV showed a good linear relationship with the logarithm of the CD44 protein concentrations in the range of 0.5-1000 ng mL-1 and the detection limit was 0.052 ng mL-1 (S/N = 3). The sensing platform showed excellent anti-interference performance and outstanding stability that maintained over 97% of original EOCV after 15 days. In addition, the relative standard deviation (1.40-1.96%) and recovery (100.23-101.31%) obtained from detecting CD44 protein in real-life blood samples without special pre-treatment indicated that the constructed biosensor had great potential for early cancer diagnosis.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Transporte de Elétrons , Glucose Oxidase/química , Oligonucleotídeos/metabolismo , Eletrodos , Limite de Detecção
4.
Cell Death Dis ; 15(2): 160, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383492

RESUMO

Dysregulation of anti-apoptotic and pro-apoptotic protein isoforms arising from aberrant splicing is a crucial hallmark of cancers and may contribute to therapeutic resistance. Thus, targeting RNA splicing to redirect isoform expression of apoptosis-related genes could lead to promising anti-cancer phenotypes. Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. In this study, through RT-PCR and Western Blot analysis, we found that BCLX pre-mRNA is aberrantly spliced in GBM cells with a favored splicing of anti-apoptotic Bcl-xL. Modulation of BCLX pre-mRNA splicing using splice-switching oligonucleotides (SSOs) efficiently elevated the pro-apoptotic isoform Bcl-xS at the expense of the anti-apoptotic Bcl-xL. Induction of Bcl-xS by SSOs activated apoptosis and autophagy in GBM cells. In addition, we found that ionizing radiation could also modulate the alternative splicing of BCLX. In contrast to heavy (carbon) ion irradiation, low energy X-ray radiation-induced an increased ratio of Bcl-xL/Bcl-xS. Inhibiting Bcl-xL through splicing regulation can significantly enhance the radiation sensitivity of 2D and 3D GBM cells. These results suggested that manipulation of BCLX pre-mRNA alternative splicing by splice-switching oligonucleotides is a novel approach to inhibit glioblastoma tumorigenesis alone or in combination with radiotherapy.


Assuntos
Glioblastoma , Precursores de RNA , Humanos , Processamento Alternativo/genética , Apoptose/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Oligonucleotídeos/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética
5.
Mol Pharm ; 21(3): 1204-1213, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38319924

RESUMO

Cytosolic DNA sensors (CDSs) recognize DNA molecules that are abnormally located in the cytosol, thus leading to the activation of the stimulator of interferon genes (STING) and the induction of type 1 interferon. In turn, type 1 interferon evokes defensive reactions against viral infections and activates the immune system; therefore, the use of agonists of CDSs as cancer therapeutics and vaccine adjuvants is expected. Double-stranded DNA molecules with dozens to thousands of bases derived from bacteria and viruses are agonists of CDSs. However, DNA is a water-soluble molecule with a high molecular weight, resulting in poor cellular uptake and endosomal escape. In contrast, long single-stranded DNA (lssDNA) obtained by rolling circle amplification is efficiently taken up and localized to endosomes. Here we constructed a CDS-targeting lssDNA via the facilitation of its intracellular transport from endosomes to the cytosol. An endosome-disrupting GALA peptide was used to deliver the lssDNA to the cytosol. A peptide-oligonucleotide conjugate (POC) was successfully obtained via the conjugation of the GALA peptide with an oligonucleotide complementary to the lssDNA. By hybridization of the POC to the complementary lssDNA (POC/lssDNA), the CDS-STING pathway in dendritic cells was efficiently stimulated. GALA peptide-conjugated DNA seems to be a helpful tool for the delivery of DNA to the cytosol.


Assuntos
DNA de Cadeia Simples , Peptídeos , Citosol/metabolismo , DNA de Cadeia Simples/metabolismo , Peptídeos/química , DNA/genética , Interferons/genética , Interferons/metabolismo , Oligonucleotídeos/metabolismo
6.
Angew Chem Int Ed Engl ; 63(4): e202314262, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38012811

RESUMO

Molecular profiling of protein markers on small extracellular vesicles (sEVs) is a promising strategy for the precise detection and classification of ovarian cancers. However, this strategy is challenging owing to the lack of simple and practical detection methods. In this work, using an aptamer-based nanoflow cytometry (nFCM) detection strategy, a simple and rapid method for the molecular profiling of multiple protein markers on sEVs was developed. The protein markers can be easily labeled with aptamer probes and then rapidly profiled by nFCM. Seven cancer-associated protein markers, including CA125, STIP1, CD24, EpCAM, EGFR, MUC1, and HER2, on plasma sEVs were profiled for the molecular detection and classification of ovarian cancers. Profiling these seven protein markers enabled the precise detection of ovarian cancer with a high accuracy of 94.2 %. In addition, combined with machine learning algorithms, such as linear discriminant analysis (LDA) and random forest (RF), the molecular classifications of ovarian cancer cell lines and subtypes were achieved with overall accuracies of 82.9 % and 55.4 %, respectively. Therefore, this simple, rapid, and non-invasive method exhibited considerable potential for the auxiliary diagnosis and molecular classification of ovarian cancers in clinical practice.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Biomarcadores Tumorais/metabolismo , Neoplasias Ovarianas/patologia , Oligonucleotídeos/metabolismo , Proteínas de Choque Térmico/metabolismo , Vesículas Extracelulares/metabolismo
7.
Bioconjug Chem ; 34(10): 1780-1788, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37736001

RESUMO

Proteolysis-targeting chimeras (PROTACs) have attracted attention as a chemical method of protein knockdown via the ubiquitin-proteasome system. Some oligonucleotide-based PROTACs have recently been developed for disease-related proteins that do not have optimal small-molecule ligands such as transcription factors. We have previously developed the PROTAC LCL-ER(dec), which uses a decoy oligonucleotide as a target ligand for estrogen receptor α (ERα) as a model transcription factor. However, LCL-ER(dec) has a low intracellular stability because it comprises natural double-stranded DNA sequences. In the present study, we developed PROTACs containing chemically modified decoys to address this issue. Specifically, we introduced phosphorothioate modifications and hairpin structures into LCL-ER(dec). Among the newly designed PROTACs, LCL-ER(dec)-H46, with a T4 loop structure at the end of the decoy, showed long-term ERα degradation activity while acquiring enzyme tolerance. These findings suggest that the introduction of hairpin structures is a useful modification of oligonucleotides in decoy oligonucleotide-based PROTACs.


Assuntos
Receptor alfa de Estrogênio , Quimera de Direcionamento de Proteólise , Receptores de Estrogênio , Receptor alfa de Estrogênio/metabolismo , Oligonucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Humanos
8.
Bioconjug Chem ; 34(10): 1822-1834, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37733627

RESUMO

The formation of noncovalent complexes by mixing of positively charged polymers with negatively charged oligonucleotides (ONs) is a widely explored concept in nanomedicine to achieve cellular delivery of ONs. Uptake of ON complexes occurs through endocytosis, which then requires release of ON from endosomes. As one type of polymer, cell-penetrating peptides (CPPs) are being used which are peptides of about 8-30 amino acids in length. However, only a few CPPs yield effective cytosolic ON delivery and activity. Several strategies have been devised to increase cellular uptake and enhance endosomal release, among which an increase of osmotic pressure through the so-called proton sponge effect, disruption of membrane integrity through membrane activity, and disulfide-mediated polymerization. Here, we address the relevance of these concepts for mRNA delivery by incorporating structural features into the human lactoferrin-derived CPP, which shows uptake but not delivery. The incorporation of histidines was explored to address osmotic pressure and structural motifs of the delivery-active CPP PepFect14 (PF14) to address membrane disturbance, and finally, the impact of polymerization was explored. Whereas oligomerization increased the stability of polyplexes against heparin-induced decomplexation, neither this approach nor the incorporation of histidine residues to promote a proton-sponge effect yielded activity. Also, the replacement of arginine residues with lysine or ornithine residues, as in PF14, was without effect, even though all polyplexes showed cellular uptake. Ultimately, sufficient activity could only be achieved by transferring amphipathic sequence motifs from PF14 into the hLF context with some benefit of oligomerization demonstrating overarching principles of delivery for CPPs, lipid nanoparticles, and other types of delivery polymers.


Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/química , Prótons , Oligonucleotídeos/metabolismo , Endocitose , Polímeros
9.
Methods Mol Biol ; 2701: 77-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574476

RESUMO

Many chemicals cause mutation or cancer in animals and humans by forming DNA lesions, including base adducts, which play a critical role in mutagenesis and carcinogenesis. A large number of such adducts are repaired by the DNA glycosylase-mediated base excision repair (BER) pathway, and some are processed by nucleotide excision repair (NER) and nucleotide incision repair (NIR). To understand what structural features determine repair enzyme specificity and mechanism in chemically modified DNA in vitro, we developed and optimized a DNA cleavage assay using defined oligonucleotides containing a single, site specifically placed lesion. This assay can be used to investigate novel activities against any newly identified derivatives from chemical compounds, substrate specificity and cleavage efficiency of repair enzymes, and quantitative structure-function relationships. Overall, the methodology is highly sensitive and can also be modified to explore whether a lesion is processed by NER or NIR activity, as well as to study its miscoding properties in translesion DNA synthesis (TLS).


Assuntos
DNA Glicosilases , Oligonucleotídeos , Humanos , Animais , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Clivagem do DNA , Reparo do DNA , DNA Glicosilases/metabolismo , DNA/genética
10.
Nat Commun ; 14(1): 5153, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620381

RESUMO

DNA methylation is important for gene expression and alterations in DNA methylation are involved in the development and progression of cancer and other major diseases. Analysis of DNA methylation patterns has until now been dependent on either a chemical or an enzymatic pre-treatment, which are both time consuming procedures and potentially biased due to incomplete treatment. We present a qPCR technology, EpiDirect®, that allows for direct PCR quantification of DNA methylations using untreated DNA. EpiDirect® is based on the ability of Intercalating Nucleic Acids (INA®) to differentiate between methylated and unmethylated cytosines in a special primer design. With this technology, we develop an assay to analyze the methylation status of a region of the MGMT promoter used in treatment selection and prognosis of glioblastoma patients. We compare the assay to two bisulfite-relying, methyl-specific PCR assays in a study involving 42 brain tumor FFPE samples, revealing high sensitivity, specificity, and the clinical utility of the method.


Assuntos
Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , DNA/metabolismo , Metilação de DNA , Temperatura , Oligonucleotídeos/metabolismo , Ilhas de CpG
11.
Mikrochim Acta ; 190(8): 295, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458810

RESUMO

The development and performance of a DNA probe adsorbing Mn2+-modified black phosphorus (BP@Mn2+/DNA) hybrid nanosensor is reported that enables rapid detection of cancer-derived exosomal microRNAs (miRNAs) and exosomes. This two-dimensional (2D) nanosensor can spontaneously penetrate the lipid bilayer of exosome membranes owing to its ultra-thin geometry. Subsequently, the adsorbed probe specifically hybridizes with the target miRNA and then dissociates from the nanosensor surface, generating fluorescent signals. Therefore, the BP@Mn2+/DNA nanosensor can differentiate between colorectal cancer (CRC) cell-derived exosomes and those derived from intestinal epithelial cells through sensing of exosomal miRNAs. Furthermore, when the epithelial cell adhesion molecule (EpCAM) aptamer is adsorbed onto BP@Mn2+ instead of the miRNA probe, the nanosensor is able to distinguish exosomes derived from the plasma of CRC patients from those of healthy controls by the recognition ability of the EpCAM aptamer. By utilizing this nanosensor, we were able to effectively differentiate cancer-derived exosomes through the direct detection of miRNA-21 within the exosomes, as well as the identification of specific exosomal membrane proteins. This nanosensor design paves the way for the development of rapid and efficient cancer-derived exosomal miRNA and exosome biosensing nanoplatforms.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Humanos , Exossomos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias/metabolismo , Oligonucleotídeos/metabolismo
12.
Analyst ; 148(10): 2387-2394, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129052

RESUMO

Exosomes are considered as promising biomarkers for early cancer diagnosis and prognosis. However, the majority of the research studies focused on a single type of exosomal biomarkers, which cannot comprehensively reflect the state of cancer for accurate diagnosis. To address this problem, we presented a ship-shaped microfluidic device containing a microcolumn array for simultaneous in situ detection of exosomal surface proteins and miRNAs. Exosomes were first captured in the microchannels modified with CD63 protein aptamer. Exosomal surface proteins and miRNAs were simultaneously detected in four parallel channels to avoid the interference of fluorescent signals using specific aptamers labeled by Cy5 and catalytic hairpin assembly (CHA) based signal amplification strategy. The limit of detection for multiplexed markers in exosomes was 83 exosomes per µL, which is comparable to previously reported methods. Through quantitative analysis of two disease-specific surface proteins and miRNAs derived from different cancer cells and clinical serum samples, different cancer subtypes as well as cancer patients and healthy people could be significantly distinguished. These results suggest that this simple, highly sensitive, and more accurate analytical strategy by simultaneous in situ profiling of different types of exosomal biomarkers has potential applications in cancer diagnosis and stage monitoring.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Humanos , MicroRNAs/análise , Exossomos/química , Microfluídica , Proteínas de Membrana , Neoplasias/metabolismo , Oligonucleotídeos/metabolismo
13.
Chem Commun (Camb) ; 59(38): 5685-5688, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37073467

RESUMO

Developing simple methods to silence antisense oligonucleotides (ASOs) using photocages opens up the possibility of precise regulation of biological systems. Here, we have developed a photocaging strategy based on 'handcuffing' two ASOs to a protein. Silencing was achieved by divalent binding of two terminally photocleavable biotin-modified ASOs to a single streptavidin. These 'handcuffed' oligonucleotides showed a drastic reduction in gene knockdown activity in cell-free protein synthesis and were unlocked through illumination, regaining full activity.


Assuntos
Oligonucleotídeos Antissenso , Oligonucleotídeos , Humanos , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(52): e2207897119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534803

RESUMO

Mechanisms of emergence and divergence of protein folds pose central questions in biological sciences. Incremental mutation and stepwise adaptation explain relationships between topologically similar protein folds. However, the universe of folds is diverse and riotous, suggesting more potent and creative forces are at play. Sequence and structure similarity are observed between distinct folds, indicating that proteins with distinct folds may share common ancestry. We found evidence of common ancestry between three distinct ß-barrel folds: Scr kinase family homology (SH3), oligonucleotide/oligosaccharide-binding (OB), and cradle loop barrel (CLB). The data suggest a mechanism of fold evolution that interconverts SH3, OB, and CLB. This mechanism, which we call creative destruction, can be generalized to explain many examples of fold evolution including circular permutation. In creative destruction, an open reading frame duplicates or otherwise merges with another to produce a fused polypeptide. A merger forces two ancestral domains into a new sequence and spatial context. The fused polypeptide can explore folding landscapes that are inaccessible to either of the independent ancestral domains. However, the folding landscapes of the fused polypeptide are not fully independent of those of the ancestral domains. Creative destruction is thus partially conservative; a daughter fold inherits some motifs from ancestral folds. After merger and refolding, adaptive processes such as mutation and loss of extraneous segments optimize the new daughter fold. This model has application in disease states characterized by genetic instability. Fused proteins observed in cancer cells are likely to experience remodeled folding landscapes and realize altered folds, conferring new or altered functions.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Oligonucleotídeos/metabolismo , Fenômenos Biofísicos , Mutação
15.
Anal Chem ; 94(50): 17413-17421, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36469021

RESUMO

Epidermal growth factor receptor (EGFR) nuclear translocation correlates with the abnormal proliferation, migration, and anti-apoptosis of tumor cells. Monitoring EGFR nuclear translocation provides insights into the molecular mechanisms underlying cancers. EGFR nuclear translocation includes two processes, EGFR phosphorylation and phosphorylated EGFR translocation to the nucleus. With the help of aptamers, probes that can achieve the first step of anchoring phosphorylated EGFR have been developed. However, the EGFR nuclear translocation can last for hours, posing a challenge to monitor the entire nuclear translocation in living cells. Herein, we designed a circular bivalent aptamer-functionalized optical probe with greatly enhanced stability for long-term visualization of EGFR nuclear translocation in situ. The results of cell experiments show that the probe could monitor the entire nuclear translocation of EGFR. The findings of tissue and in vivo experiments demonstrate that the probe can evaluate the development and progression of tumors by imaging EGFR nuclear translocation in situ. The proposed approach allows us to monitor EGFR nuclear translocation in the long term, indicating its great potential in investigating the mechanisms of cancers and guiding for tumor treatment.


Assuntos
Receptores ErbB , Neoplasias , Humanos , Receptores ErbB/metabolismo , Fosforilação , Neoplasias/metabolismo , Transporte Proteico , Oligonucleotídeos/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Núcleo Celular/metabolismo
16.
Cell Death Dis ; 13(10): 865, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224178

RESUMO

Acute-on-chronic liver failure is a distinct clinical syndrome characterized by a dysregulated immune response and extensive hepatocyte death without satisfactory therapies. As a cytoplasmic degradative and quality-control process, autophagy was implicated in maintaining intracellular homeostasis, and decreased hepatic autophagy was found in many liver diseases and contributes to disease pathogenesis. Previously, we identified the therapeutic potential of mesenchymal stem cells (MSCs) in ACLF patients; however, the intrinsic mechanisms are incompletely understood. Herein, we showed that MSCs restored the impaired autophagic flux and alleviated liver injuries in ACLF mice, but these effects were abolished when autophago-lysosomal maturation was inhibited by leupeptin (leu), suggesting that MSCs exerted their hepatoprotective function in a pro-autophagic dependent manner. Moreover, we described a connection between transcription factor EB (TFEB) and autophagic activity in this context, as evidenced by increased nuclei translocation of TFEB elicited by MSCs were capable of promoting liver autophagy. Mechanistically, we confirmed that let-7a-5p enriched in MSCs derived exosomes (MSC-Exo) could activate autophagy by targeting MAP4K3 to reduce TFEB phosphorylation, and MAP4K3 knockdown partially attenuates the effect of anti-let-7a-5p oligonucleotide via decreasing the inflammatory response, in addition, inducing autophagy. Altogether, these findings revealed that the hepatoprotective effect of MSCs may partially profit from its exosomal let-7a-5p mediating autophagy repairment, which may provide new insights for the therapeutic target of ACLF treatment.


Assuntos
Insuficiência Hepática Crônica Agudizada , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células-Tronco Mesenquimais , MicroRNAs/genética , Insuficiência Hepática Crônica Agudizada/genética , Insuficiência Hepática Crônica Agudizada/metabolismo , Animais , Autofagia , Leupeptinas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Oligonucleotídeos/metabolismo
17.
Alzheimers Res Ther ; 14(1): 140, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184615

RESUMO

BACKGROUND: The protracted preclinical stage of Alzheimer's disease (AD) provides the opportunity for early intervention to prevent the disease; however, the lack of minimally invasive and easily detectable biomarkers and their measurement technologies remain unresolved. Extracellular vesicles (EVs) are nanosized membrane vesicles released from a variety of cells and play important roles in cell-cell communication. Neuron-derived and ganglioside-enriched EVs capture amyloid-ß protein, a major AD agent, and transport it into glial cells for degradation; this suggests that EVs influence Aß accumulation in the brain. EV heterogeneity, however, requires the use of a highly sensitive technique for measuring specific EVs in biofluid. In this study, immuno-digital invasive cleavage assay (idICA) was developed for quantitating target-intact EVs. METHODS: EVs were captured onto ganglioside GM1-specific cholera toxin B subunit (CTB)-conjugated magnetic beads and detected with a DNA oligonucleotide-labeled Aß antibody. Fluorescence signals for individual EVs were then counted using an invasive cleavage assay (ICA). This idICA examines the Aß-bound and GM1-containing EVs isolated from the culture supernatant of human APP-overexpressing N2a (APP-N2a) cells and APP transgenic mice sera. RESULTS: The idICA quantitatively detected Aß-bound and GM1-containing EVs isolated from culture supernatants of APP-N2a cells and sera of AD model mice. The idICA levels of Aß-associated EVs in blood gradually increased from 3- to 12-month-old mice, corresponding to the progression of Aß accumulations in the brain of AD model mice. CONCLUSIONS: The present findings suggest that peripheral EVs harboring Aß and GM1 reflect Aß burden in mice. The idICA is a valuable tool for easy quantitative detection of EVs as an accessible biomarker for preclinical AD diagnosis.


Assuntos
Doença de Alzheimer , Amiloidose , Vesículas Extracelulares , Animais , Humanos , Lactente , Camundongos , Doença de Alzheimer/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Biomarcadores/metabolismo , Toxina da Cólera/metabolismo , Vesículas Extracelulares/metabolismo , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/metabolismo , Camundongos Transgênicos , Oligonucleotídeos/metabolismo
18.
Sci Rep ; 12(1): 15826, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138054

RESUMO

SIRT1, a known regulator of cellular senescence, is a therapeutic target for age related disorders and its upregulation is a strategy to improve the cell therapeutic potentials of human mesenchymal stem cell (MSCs). Knockdown of natural antisense transcripts via small activating RNAs (RNAa) is an emerging approach for safe and locus specific gene regulation. We have recently identified a natural antisense transcript at human SIRT1 locus (SIRT1-NAT), the expression of which shows a negative correlation with that of SIRT1. To test the hypothetic upregulation of SIRT1 via knockdown of SIRT1-NAT, in this study we designed a single stranded oligonucleotide (SIRT1-antagoNAT) against the antisense transcript, transfection of which efficiently knocked down the SIRT1-NAT and induced SIRT1 transcription in human MSCs. In addition, activation of SIRT1 transfection via knockdown of SIRT1-NAT in human MSCs enhanced their proliferation and differentiation potentials, reduced senescence associated ß-galactosidase activity and reversed the senescence associated molecular alterations. Our findings introduce an RNAa mediated approach for epigenetic induction of endogenous SIRT1 and the consequent attenuation of senescence. Further studies should evaluate the therapeutic potentials of this approach against various age related disorders.


Assuntos
Epigênese Genética , Células-Tronco Mesenquimais , Sirtuína 1 , Senescência Celular/genética , Humanos , Oligonucleotídeos/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ácidos Urônicos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
19.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142137

RESUMO

In mammals, de novo methylation of cytosines in DNA CpG sites is performed by DNA methyltransferase Dnmt3a. Changes in the methylation status of CpG islands are critical for gene regulation and for the progression of some cancers. Recently, the potential involvement of DNA G-quadruplexes (G4s) in methylation control has been found. Here, we provide evidence for a link between G4 formation and the function of murine DNA methyltransferase Dnmt3a and its individual domains. As DNA models, we used (i) an isolated G4 formed by oligonucleotide capable of folding into parallel quadruplex and (ii) the same G4 inserted into a double-stranded DNA bearing several CpG sites. Using electrophoretic mobility shift and fluorescence polarization assays, we showed that the Dnmt3a catalytic domain (Dnmt3a-CD), in contrast to regulatory PWWP domain, effectively binds the G4 structure formed in both DNA models. The G4-forming oligonucleotide displaced the DNA substrate from its complex with Dnmt3a-CD, resulting in a dramatic suppression of the enzyme activity. In addition, a direct impact of G4 inserted into the DNA duplex on the methylation of a specific CpG site was revealed. Possible mechanisms of G4-mediated epigenetic regulation may include Dnmt3a sequestration at G4 and/or disruption of Dnmt3a oligomerization on the DNA surface.


Assuntos
DNA Metiltransferase 3A/metabolismo , Quadruplex G , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Epigênese Genética , Mamíferos/metabolismo , Camundongos , Oligonucleotídeos/metabolismo
20.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955457

RESUMO

Cell-penetrating peptides (CPP) have been shown to be efficient in the transport of cargoes into the cells, namely siRNA and DNA, proteins and peptides, and in some cases, small therapeutics. These peptides have emerged as a solution to increase drug concentrations in different tissues and various cell types, therefore having a relevant therapeutic relevance which led to clinical trials. One of them, MAP, is a model amphipathic peptide with an α-helical conformation and both hydrophilic and hydrophobic residues in opposite sides of the helix. It is composed of a mixture of alanines, leucines, and lysines (KLALKLALKALKAALKLA). The CPP MAP has the ability to translocate oligonucleotides, peptides and small proteins. However, taking advantage of its unique properties, in recent years innovative concepts were developed, such as in silico studies of modelling with receptors, coupling and repurposing drugs in the central nervous system and oncology, or involving the construction of dual-drug delivery systems using nanoparticles. In addition to designs of MAP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy, this review will be focused on unique molecular structure and how it determines its cellular activity, and also intends to address the most recent and frankly motivating issues for the future.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Oligonucleotídeos/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA